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The problem of formation of a wave train from an axisymmetric initial disturbance caused by the fall of a 

celestrial body into water is solved by the method of the potential of a double layer. The main difficulty in 

the solution of the problem consists in calculation of two-dimensional integrals in a cylindrical system of 

coordinates to find the velocity potential. An algorithm that allows one to reduce calculation of two- 

dimensional integrals to calculation of integrals of a special form that depend on one parameter is suggested. 

Use of the algorithm substantially improved the efficiency of the computer program. An analysis of the results 

of calculation showed that two regions - of shortwave disturbances and of longwave flow - exist at the stage 

of formation of the wave structure from the initial disturbance. 

Formulation of the Problem. A detailed description of the formulation of the problem is given in [1 ]. 

Since water is virtually incompressible, the continuity equation for it can be written in the form div ~=  0. 

We also assume that the liquid flow is nonvortical; this allows us to consider one scalar function ~= grad 9o(r, z, t) 

instead of the two components of the vector function ~ a n d  one equation for the potential A~o = 0 instead of two 

equations for the velocity components [2 ]. 

Two conditions (kinematic and dynamic) that describe the motion of the upper movable part of the bound- 

ary were considered as the boundary conditions on the upper part of the boundary. Here, continuity of pressure 

across the water -a i r  interface was assumed and the action of surface tension forces was neglected. On the lower 

part of the boundary the condition of equality to zero of the z component of velocity was used. On the right part 

of the boundary the conditions of rest were formulated, i.e., it was assumed that disturbances did not reach the 

right-hand boundary at the considered instants of time. The conditions of symmetry were taken into account at 
the origin of the system of coordinates. 

As initial conditions we assumed that at the initial instant of time the wave profile is known and the velocity 

of the liquid is zero. 

Method of Numerical Solution of the Problem. The employed method of numerical solution of the above- 

formulated problem is a combination of the method of potentials and the method of straight lines [1 ]. The essence 

of it is the following. The nodes of the spatial grid lie only on the surface of the region. The potential of the velocity 

is sought in the form of the potential of a double layer, for determination of which the finite-difference 

approximation of the corresponding Fredholm integral equation of She second kind is used on the upper boundary. 

On the right-hand and lower boundaries the finite-difference approximation of the corresponding equations that 

are obtained by exact differentiation of the formula that approximates the velocity potential is used. In the partial 

differential equation for the z component of the wave profile the time derivatives are not approximated. As a result, 

the initial problem is reduced to the Cauchy problem for a nonlinear system consisting of ordinary differential 

equations and stationary equations for the values of the density function of the double layer at the nodes of the 

surface grid. To solve this Cauchy problem we used a STIFF package of programs modified by the present authors. 

This made it possible to use it in the solution of the Cauchy problem for a combined system of differential and 

stationary equations. The main convenience of this approach is that in the program STIFF the procedure of choosing 

the time step in accordance with the local accuracy of integration assigned beforehand is automated. 
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Grid Construct ion.  In construction of the grid the nodes are assigned on the wave profile and on the 

right-hand and lower boundaries. On the wave profile the grid is constructed in the following way. The  length of 

the curve of the initial profile is calculated, and then this length is divided by the prescribed number  of nodes. 

Then the nodes are  equally spaced on the curve. The projections of the nodal points on the R axis form a nonuniform 

grid in the variable r, which is then used in the numerical simulation. This  method allows one to approximate 

satisfactorily even almost vertical initial wave profiles (for example, 50 points are enough to approximate the initial 

profile of a water  column whose height amounts  to 5 km and whose width is only 50 m, the radius of the region of 

solution of the problem is 10 km). On the r ight-hand boundary a quasi-uniform grid in the variable z is constructed; 

the grid is compressed toward the water surface so that the steps in r and  z at the upper right point are equal to 

each other. On the lower boundary a uniform grid in the variable r is used. 

Approximat ion of the Velocity Potential. The surface profile S is a continuous curve consisting of three 

smooth parts:  the  upper  boundary  Su, the r ight-hand bounda ry  St, an d  the lower b o u n d a r y  Sb, i.e, S -- 

Su + Sr + Sb. Sr and  Sb are rectilinear. The  density of the potential of the double layer 7(Ps )  is a continuous, 

piecewise smooth function determined on the curve S. We impose a grid consisting of N + 1 nodes on the curve S. 

We approximate the curve S by a continuous broken line consisting of N links Si, i.e., S = 37 Si. We assume the 

function Y(Ps)  to be a step function on S. i 

Upon imposition of the grid the region of integration if2 is divided into annular segments if2 i, with ~ = 

37 ff~i. Thus,  to calculate the potential of the velocity we have the formula [3 ] 
i 

N O [ ] (1) 
so (M)  = i:12 ~ (PS i) fffi" [ MpiJ dcTpi' 

where Pi E ~i  and Psi E S i. 
The Cauchy  Problem That Approximates the Initial Problem. The  density of the potential of the double 

layer at the nodes of the grid on the surface, the z coordinate of the wave profile, and the velocity potential at the 

nodes of the grid on the surface are unknown quantities. 

The s ta t ionary equations for the density of the potential of the double layer have the form: 

a) on the upper  part of the boundary 

so (M) - (M) - soS (M) = 0 ,  
(2) 

here soS(M) is the limiting values of the potential from inside, for calculation of which the corresponding equations 

((5), (6), see below) should be added; 

b) on the r ight-hand part of the boundary 

7 (Ps) = O, (3) 

c) on the lower part of the boundary 

OSO = O.  (4)  
Oz 

The ord inary  differential equations for the coordinate z of the wave profile and the potential on the wave 

surface have the form 

dz S z S (5) 
dt - Ur Ar + uz ' 

= _ g z  S 1 1 (u~)2 (6) 
dt - -2 (ttr)2 -- 2 " 
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H e r e  Ur, Uz are  ca lcula ted  as  der iva t ives  of the potent ia l  by exact  d i f fe rent ia t ion  of formula  (1). 

T h u s ,  Eqs. (1 ) - (6 )  ac tua l ly  contain the values of the  densi ty  funct ion of the double layer.  

Calcula t ion  of  the  Veloci ty  Potent ial  and Its Der iva t ives .  Using the  no ta t ion  

~0 i (M) = f f  ~ ' ~  dcTPi , (7) 

we can  wr i t e  formula  (1) in the  fo rm T(M)  ; Y },(Psi)~oi(M). Calculat ing the  der ivat ive  in formula  (7),  we  have  
t 

yg 

Ti (r, z) = 2 f f K (r, z, p ,  T, h) p dS  i d~o , (8) 
o s i 

w h e r e  

n r ( r c o s  ~o - p )  + n z (z - h) 
K (r, z, p ,  T, h) = a ' (9) 

rMp 

rM p = ~/ t:2 + p2 _ 2rp COS r + (z - h) 2 ; 

the  vec to r  of the no rma l  h ~= {nr, n~ = O, nz}. 

W e  int roduce the  no ta t ion  

n 1 = n r r  , n 2 =  - n rP  + n  z ( z - h ) ,  

�9 2 p2 , c 2 = 2pr ,  c 1 = r + + (z -- h) 2 

cos ~o , 
V- G 

a n d  t h e n  express ions  (9) ,  (10) a re  wri t ten  in the fo rm 

K (r, z, p, ~,, h) = ,,, y'~ + ,,~?~, 

0o) 

(11) 

r M p =  V r c  I - c 2cos~p . (12) 

Af te r  exact d i f fe ren t ia t ion  of express ion (11) we ob ta in  formulas  for  calculat ion of the der iva t ives  of  the  

po ten t i a l  wr i t ten  in a new nota t ion:  

O~ O~i O~i ~ OK --> 
Or - E 7 ( P s  i )  Or " Or - 2  f f -~r p d S i d ~ '  

i o s i 

O K  nrY~3_ 3rn2Y~ 5 _ 3 ( n l  r _ n2p)  Y5 + 3nl  PY~5 (13) 
Or 

O~ O~i O~i ~ OK 
az - ~ 7 (Ps  i ) Oz ' az - 2 f ~ z  p dS i  d~  ' 

i o s i 

oK _ . z ~  - 3 (z - h ) ( . ,  ~ + . 2 ~ ) -  (14) 
Oz 
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Integrals of the form f F~o, h)dS~, where Ftp, h) is some arbitrary function, are curvilinear integrals 
si 

calculated on a straight link of the broken line S. To calculate them we use the method of introduction of the 

parameter T. Let a link of the broken line be specified by the two points P1 (Pl, hi) and P2(P2, hg .  We introduce 

the parameter T such that T E [0, 1 1. We determine the functions 

p (T)  = p l  + ( /~  T,  h(T)  = h  1 + (h 2 -  hi) T ,  

and then the curvilinear integral is written in the form 

1 

f F (/9 (T), h (T)) V'(p' (T)) 2 + (h' (T)) 2 dT  
0 

or, which is the same, 

1 

f F (/9 (T), h (T)) v'(P2 
0 

- - p l )  2 + (h 2 - h l )  2 dT .  

As a result the formulas for calculation of the potential and its derivatives acquire the final form 

~O i (r, z) = 2 f f K (r, z, p (T), h (7")) p (T) q(P2 - Pl) 2 + (h2 - h i )  2 dTdcp, (15) 
o o 

1 OK (r, z, p(T),  h(T)) 
O~o i (r, z) _ 2f  f p (T) X/(p 2 - pl) 2 + (h 2 - hi) z dTd~o, (16) 

Or Or o o  

0~o i (r, z) 1 OK (r, z, p (T), h (T)) 
Oz - 2 ~f f Oz p (T) ~/(P2 - Pl) 2 + (h2 - hl) 2 dTd~o. (17) 

00  

The method of averages is used in numerical determination of the integrals. 

Special Features of Calculation of the Derivatives of the Potential of the Double Layer. The equations of 

the initial problem involve the components of the velocity Ur and Uz calculated at the points PS. This means the 

following: 

Ur (Ps) = lim 0~o (M) Uz (Ps) = lim 0~o (M) (18) 
M_+p S Or ' M ~ P s  Oz 

The point M lies inside the region and approaches PS along the normal. Since in our problem the density of the 

potential of the double layer is approximated by a step function, calculations by formulas (18) are not expedient 

because the accuracy of the result of calculations will be beyond the limits of the required accuracy of the solution 

of the problem. The components of the velocity Ur and Uz are suggested to be found by "receding a step inside the 

region," when Ur and Uz are calculated at points Ps obtained in receding from the point Ps by a constant value 

AL* (the step of receding) along the inner normal: 

aT (Ps) O~o (Ps) (19) 
Ur (Ps) = a ~ '  uz (Ps) = a ~  

By meaning, the value of AL* should not exceed the length L of the nearest link of the broken line (Lsi). The value 

of AL* is suggested to be found by the formula 
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Si . 

/ 
Fig. 1. Illustration of the "method of receding by a step inside the region." 

AL* = l* rain ALsi ,  (20) 
i 

where/* is the adjustable parameter , /* > 0; ALsi is the length of the i-th link of the broken line (see Fig. la). 

The  corner  nodes of the r ight-hand boundary  of the region determine the upper permissible value of the 

parameter /* : /*  < 1 /2 .  The smaller the step of receding, the closer, seemingly, the values calculated by formulas 

(19) to their exact  values. However, a numerical experiment showed that for the parameter  l there  also exists a 

minimum permissible value, which is determined by the required accuracy of calculation of the derivatives of the 

potential and the accuracy of calculation of the integrand. We consider,  as an example, calculation of the r 

component of the velocity for the following problem. Let us have an equilibrium undisturbed surface of liquid with 

a density of the potential  of the double layer  7 = 1. We calculate the r component of the velocity for a point PS lying 

on the upper boundary .  Without loss of generali ty,  we consider the point PS to be far from the point 0 and the 

depth of the liquid to be large. Then the value of Ur is calculated as a sum in formulas (13). A graph of the 

dependence of the terms of the sum on the ordinal number  is presented in Fig. lb. The theoretical value of Ur is 

zero. As is seen from Fig. lb, paired terms Og,i_k/Or and Og,i+k/Or are present in the sum, these terms are 

approximately equal in modulus and opposite in sign. As the parameter  I decreases, the moduli of the corresponding 

paired terms increase.  Therefore,  if 09,i/Or is calculated with a certain fixed accuracy, then the accuracy of 

calculation of Ur decreases. It follows that,  assigning a certain accuracy of calculation of Ur, we obtain a limit for 

I O~oi/Orl and,  consequently,  for the minimum permissible value of the parameter l. 

All the aforesaid also refers to calculation of uz. 
The descr ibed special features of calculation of the derivatives of the potential are explained by the complex 

behavior of the integrands arising in this problem. 

Special Fea tures  of the Method of Integration over the Polar Angle. The dependence on the integration 

variable 9' enters only the functions 

t2 

cos 9, (21) 
Y; (el, c 2, 9,) = 

(c]  - c z c o s  9 , ) ~ / 2  ' 

where a = 0, 1, 2;/3 = 3, 5; cl, c2 E (0, ao). To  these functions the following integrals correspond: 

yr  

/~fl (Cl' r --~ f Y; (el, ("2, 9,) d9,. (22) 
0 

At cl = c2 the functions ]/fl~(r C2, 9,) have a second-order  discontinuity at the point 90 = 0. In this case, the integral 

fffl(cl, c2 = cl) diverges logarithmically. The  equality Cl = c2 corresponds to the case where the points M(r, z) and 

Psi(P, 9,, h) coincide. This situation arises on each link of the broken line in calculation of the potential of the 

double layer. Here  the double integral converges on each link of the broken line, i.e., in summation of integrals 

(22) the logarithmic features in formulas ( I1) ,  (13), and (14) are cancelled out. The problem of choosing a 
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numerical method of integration which could be capable of eliminating the above-described difficulty arises here. 

The  method of averages,  where in contrast to the method of trapezoids and the Simpson method this special case 

does not arise, tu rned  out to be most suitable. 

Preliminary calculations showed that calculation of integrals (22) at each step of the algori thm leads to 

inadmissibly large expendi tures  of computer time. Thereaf te r ,  for calculation of integrals over the angle,  the method 

of tabulation of functions,  which allowed one to increase considerably the speed of calculations, was used. 

Method of Tabula t ion  of Functions. Using the method of averages as a guide, we consider the case where 

Cl ;~ c2. Since the functions Y~(ct, c2, ~p) are bounded on the region of variation of 90, 90 E [0, st 1, we pass over to 

their analogs normalized to unity at the point ~p = 0: 

t 

_ l ) f l / 2 '  

(23) 

y,a ( q / c 2 ,  90) = 
(c 1/c 2 - l)fl/2 cosa ~o (24) 

(c 1/c  2 - COS T)fl/2 

We introduce the parameter  a -- Cl/C2, a ~ (1, oo). Th en  expression (24) is written as 

Y~'~ (a, 90) - (a - 1) fl/2 cos '~ 

(a - cos 9o) ill2 

The  integral/~(Cl,  C2) is transformed to 

/ ~  (Cl ,  C2) = ~2/2 l'fla 
(Cl/C 2) 

(Cl/C 2 - 1)fl /2 '  

(25) 

(26) 

.7"g 
= f 90) a90. (27) 

o 

The  integral I'~a(a) is a function of one parameter  a, which is determined by the mutual position of the points M(r, 
z) and Psi(P, 90, h). As is seen from (25), as the parameter  a tends to infinity, the integral I'~a(a) asymptotically 

tends to its maximum value. Depending on the indices a and fl it is equal to 

max I'~ a (a) = 
a 

~ ,  if t 3 = 3 ,  a = O ,  
O, if f l = 3 ,  a = l ,  
~ ,  if [ 3 = 5 ,  a = O ,  
O, if f l = 5 ,  a =  1,  
~ / 2 ,  if / 3 = 2 ,  a = 2 .  

(28) 

Having prescribed a certain accuracy, we succeed in approximating the function l'~a(a) by a continuous 

curve. Then we can construct  a table of values of the function at the points of division of the region of variation of 

the parameter a, which are  the a coordinates of the nodes of the broken line. By an additional program we can 

construct tables for use of these values in the solution of the main problem. These tables are universal and do not 

depend on the initial parameters of the problem. Thus ,  in order not to calculate values of the function l~(a) in 

solving the problem and  to increase the speed of solution, the tabulated functions were used in the work. 

Special Fea tures  of  the Method of Tabulat ion.  We consider, as an example, the graph of the function 

Y'3~ 90) of the variable ~, at different values of the parameter  a. As is seen from Fig. 2, for values of the parameter 

close to unity the function decreases rapidly near  the zero point. Since the values of the parameter a that  are actually 
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Fig. 2. Graph of the function Y'3~ 79) for different values of the parameter 

a. 79, tad. 
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Fig. 3. Graph of the dependence of the approximation error for different 

values of the parameter a. 

encountered in the solution of the problem reach a value of 1 + 10 -10 in their minimum, none of the existing 

s tandard numerical methods of integration allows one to calculate an integral of this function with sufficient 

accuracy. To calculate integrals of the function Y'~a(a, 79) we developed a special numerical-analytical method. 

Therefore, they are calculated approximately, so that the integrals coincide within a prescribed accuracy with the 

initial ones on the interval (0, 79*). As a result of approximation of the integrands we found the following functions: 

r e (a, 79) = 
( a -  1)///2 (29) 

r~ " (a, 79) = r~ (a, r  (30) 

For any  a and fl these functions satisfy our requirements, and integrals of them are calculated analytically: 

* % * 
1 3 (a, 79*) = J Y3 (a, 79) d79 = ~ ~o* vr-Sa 1 (31) 

0 x]---2 ( a -  1) + (79*)2 ' 

. ~ '  . 2 ( 3  15(a,79.) = f Y5(a, 79) d79 = ( a -  l) + (~o*) 2) 
o 3 

~o* G -  1 (32) 
(2 (a - 1) + (79*)2)3/2" 

To integrate the initial functions on the remaining interval (79*, Jr) we used the method of averages for 

numerical integration. 
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Fig. 4. Results of calculation of wave-structure formation in the fall of a cosmic 

object into the ocean. The  values of the wave profiles at the indicated instants 

of time are given in kilometers, t, sec; z S, r, kin. 

The  parameter  of division 7"* depends on the number of the approximating functionfl,  the required accuracy 

of approximation e, and the parameter  a, i.e., 7"fl = 7"fl(a, e). We consider an algorithm for determinat ion of 7" on 

the example of the function Y'B~ 7'). Figure 3 presents the dependence of the approximation error  for different 

values of the parameter  a. Using the envelope of graphs constructed for different values of the parameter  a, having 

prescribed a certain accuracy, we can obtain the minimum value of the parameter of division 7"*. 

Results of  Calculation and Thei r  Discussion. Numerical calculation of the evolution of an initial disturbance 

in the ocean showed that an initial shortwave disturbance produced on water initiates a longwave disturbance. This 

leads to the fact that a formed train of waves resembles a tsunami more and more. Figure 4 presents results of 

calculation of wave-structure formation in the fall of a cosmic object into the ocean. The initial profile of the surface 

had a height of 0.5 km and a valley at the origin of coordinates equal to 1.5 kin. The maximum point of the initial 

profile corresponded to r = 15 km. The  ocean depth was 5 km, the length of the region of solution of the problem 

was 200 km. The  grid contained I31 nodes on the wave profile. 

An analysis of the graphs in Fig. 4 shows that even at the stage of formation of the wave structure from 

the initial disturbance there exist two regions: the region of shortwave disturbances and the region of longwave 

flow. Fur ther  evolution of the disturbance leads to disappearance of the shortwave disturbances and development 

of longwave ones. These  data confirm the hypothesis that the fall of cosmic bodies into the ocean can lead to 

formation of tsunami. 

The  work was carried out with support from the International Science and Technology Center,  project 

B23-96. 

N O T A T I O N  

u~ velocity vector of liquid; 7"(r, z, t), potential of the velocity; t, time variable; r, radial spatial variable of 

the cylindrical system of coordinates; z, spatial variable; S, curve of the surface profile; Su, part of the surface 

profile corresponding to the upper boundary;  St, part of the surface profile corresponding to the r ight-hand bound- 

ary; Sb, part of the surface profile corresponding to the lower boundary; 7(Ps), density of the potential of the 

double layer  at points on the liquid boundary;  Ps, points of the boundary of the liquid volume; N, number of links 

in the approximating broken line; Si, link of the broken line; i, index of the number of the link of the broken line; 
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Q, region of integration; ff~i, annular segment of the integration region; M(r, z), P(p, h), arbitrary points inside 
the region; O/One, derivative along the normal to the surface at the point P; rMt,, distance between the points M 

and P; dgp, differential of the region of solution; ~oS(M), limiting values of the potential of the velocity from inside; 
O/Ot, partial derivative with respect to the variable t; O/Oz, partial derivative with respect to the variable z; O/Or, 
partial derivative with respect to the variable r; z S, z coordinate of the wave profile; Ur, component of the velocity 

vector along the r axis; Uz, component of the velocity vector along the z axis; Ar, finite-difference operator of 
differentiation with respect to r; dSi, differential of the length of the curve of the liquid boundary; d~o, differential 

of the polar angle; K(r, z, p, ~o, h), kernel of the integral representation of the velocity potential (the notation 

introduced in (9)); Y~fl(cl, c2, ~o), notation introduced by formulas (10); a, fl, hi, n2, cl, c2, parameters introduced 
after (10); F(p, h), some arbitrary function; T, actual parameter in formulas (15)-(17); p(T), h(T), auxiliary 

functions introduced in transformation of the formulas of calculation of the velocity potential and its derivatives to 

the form (15)-(17); AL*, step of receding; /*, adjustable parameter in formula (20); ALsi , length of the i-th link 
of the broken line; ~ ( c l ,  c2), notation of the integral of the function ~ ( c l ,  c2, ~o) with respect to the polar angle 
introduced by formula (22); Y'~a(cl/c2, ~o), analog of the function ~(Cl,  c2, ~o) normalized to unity at the point ~o 
= 0; a, parameter introduced in (25) as the argument of the function Y'~a(a, ~o); I'~a(a), notation of the integral of 
the function Y'~a(a, ~o) with respect to the polar angle introduced by formula (27); (0, ~o*), interval of application 

of the approximating relation in calculation of I'~a(a); ~o*, parameter of division of the interval of integration; ~ ( a ,  
~o), approximating relation for the function Y'fla(a, ~o); e, required accuracy of approximation. 
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